

## DO-003-1164003

Seat No.

## M. Sc. (Sem. IV) Examination

March / April - 2022

Mathematics: CMT-4003

(Number Theory-2)

Faculty Code: 003

Subject Code: 1164003

Time :  $2\frac{1}{2}$  Hours]

[Total Marks: 70

**Instructions**: (1) There are five questions.

- (2) All the questions are compulsory.
- (3) Each question carries 14 marks.
- 1 Do as directed: (answer any seven)

14

- (a) If  $x = <2, 2, 2, 2, \dots >$  then,  $x^2 = \underline{\hspace{1cm}}$ .
- (b) If *n* is the smallest positive integer such that  $\frac{14}{349}$  appears in the  $n^{th}$  row then n =\_\_\_\_\_.
- (c) Prove that,  $h_n k_{n-2} h_{n-2} k_n = (-1)^n a_n$ .
- (d) If (x, y, z) is a Pythagorean Triplet show that, gcd(x, z) = gcd(y, z).
- (e) Show that, there are infinitely many solutions (x, y) of  $x^2 dy^2 = 1$  in which k/y for d >1 is not a perfect square and k > 1.
- (f) Express  $\frac{2022}{29}$  and  $\frac{1992}{5}$  in contined fraction expansion.
- (g) Find the value of <1,3,3,3,3,..., ...> and <-1,2,3,4,5>.
- (h) Find the irrational number having continued fraction expansion  $< 8, \overline{1, 16} >$ .
- (i) Define: (i) Periodic continued fraction form and (ii) Primitive pythagorean triplet with examples.
- (j) Write down any two solution of 3x + 5y = 8.

- 2 Answer any two of the following:
  - (1) Prove that,  $\pi$  is an irrational.
  - (2) State and prove, Hurwitz Inequality for Farey Fractions.
  - (3) State and prove, necessary and sufficient condition under which the linear diophantine equation has a solution.
- 3 Answer the following:
  - (1) Prove that, if  $\theta$  is an irrational number then there are infinitely many rationales  $\frac{a}{b}$  such that  $\left|\theta \frac{a}{b}\right| < \frac{1}{b^2}$ ; b > 0 and (a, b) = 1.
  - (2) If the continued fraction expansion of an irrational number x is periodic then prove that, the number x is quadratic irrational.

## OR

- 3 Answer the following:
  - (1) Suppose  $\frac{x}{y}$  is a rational number where y is positive and (x, y) = 1. Prove that,  $\frac{x}{y}$  appears in the  $y^{th}$  row of farey fractions and subsequent rows.
  - (2) Suppose  $C_n x^n + C_{n-1} x^{n-1} + \cdots + C_0$  is a polynomial with integer co-efficient and  $\frac{s}{t}$  is a rational number with t is a positive and (s,t)=1. If  $\frac{s}{t}$  is a root of this polynomial then prove that, s divide  $C_0$  and t divide to  $C_n$ . Hence deduce that, if a is an integer and  $x^n = a$  has a rational root then it must be an integer.
- 4 Answer the following:
  - (1) (i) Let  $\frac{a}{b}$  and  $\frac{c}{d}$  be consecutive farey fractions in the  $n^{th}$  row. Show that, |ad bc| = 1.
    - (ii) Show that,  $15x^2 7y^2 = 9$  does not have a solution in integers.

14

14

14

14

- (2) (i) Prove that, there are infinitely many positive integers n such that  $n^2 + (n+1)^2$  is a perfect square.
  - (ii) Prove or disprove that, if  $a_0$ ,  $a_1$ ,  $a_2$ ,  $a_3$ , .....,  $a_n$  is a sequence of integers for  $a_i \ge 1$ ;  $\forall i \ge 1$  with  $\theta = \lim_{n \to \infty} r_{2n}$  then  $\theta = \lim_{n \to \infty} r_n$  where  $r_n = \frac{h_n}{k_n}$ .
- 5 Answer any two of the following:
  - Show that, if the triplet (x, y, z) is a primitive pythagorean triplet then there exists r and s such that  $r > s \ge 1$ , (r, s) = 1 and r is even then s is odd and vice-versa.
  - (2) Show that, the equation  $a^4 + b^4 = c^2$  has no solution in integers.
  - (3) Prove that, if  $\theta$  is an irrational number and suppose for some rational number  $\frac{a}{b}$  for b>0 and (a, b)=1 with  $|\theta b-a|<|\theta k_n-h_n|$  for some n then  $b\geq k_{n+1}$ .
  - (4) Show that, the equation  $x^2 = y^3 + 7$  has no solution in integers.

14